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Let {x,:n < @} be a sequence of objects.

We can think that it is a sequence of points in a topological
space... or a sequence of vectors in a Banach space... or whatever.

We are going to look at different classes of subsequences of this
sequence.
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Suppose {x,:n < ®} is a dense subset of R.

© The class g are the subsequences converging to a rational.

@ The class '™ are the subsequences converging to a positive
irrational.

© The class '™ are the subsequences converging to a negative
irrational.

@ These classes are hereditary, and pairwise disjoint.

@ The classes '™ and I~ can be separated through
{Xn:xn >0} U{xp: x, <0}.

@ The classes I'q and I'" cannot be separated.
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© The class I, are the subsequences for which norms of linear
combinations are computed as

13 aixi|| = (Z|ai|p)1/p
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Fix a countable set N

Definition
An n-gap is a tuple of hereditary families of infinite subsets of N

r={lo,...,Mn-1}

which are pairwise disjoint and not separated.

@ The families Ig,...,M,_1 are separated if there exists a
decompostion N = J;., N; such that ;N Z2(N;) = 0.

@ Here, disjoint is equivalent to orthogonal: AN B is finite
whenever AcT;, BeT;fori#j.

© The families I live in 2(N) = 2", so they might be Borel,
analytic, coanalytic, projective, etc.
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Definition

A strong n-gap is an n-gap
r={lo,...,Mn-1}

which is not countably separated.

© The families INg,...,[,_1 are countably separated if there exist
countably many decompostions

N = Ui<n N,p

Vag€lg,...,an-1 €M1 dp ’a;ﬂNf|<No.
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Consider N the set of successor ordinals below ®3
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Meaning that {[g|p,1|pm} form a 2-gap, but I's|p = 0.

Can we always isolate a part of a gap from the rest? No...
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A very exotic example

For each x € R, fix Sy — x
Given ZCR, letT;={ACQ:3xe Z:AC S5}

Example

If the Z; are pairwise disjoint Bernstein sets, then

r={rz,....Tz, .}
is an n-gap in which nothing can be isolated.

Formally, if {Fz|m,Tz|m} is a 2-gap, then |y is an n-gap.

Can we always isolate a part of a Borel gap from the rest? Some
parts, but not all...
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Sample results

If Fg,...,Mh_1 is an analytic n-gap, then AM C N :

e Tolm,T1|m,T2|m form a 3-gap.
o Ix|p =0 for all but at most 58 many of the remaining k.

ok
F(3) =58, F(k) ~ 3

If Fg,...,Mh_1 is a strong analytic n-gap, then IM C N :

e To|m,T1|m, 2| form a strong 3-gap.
@ |p =0 for all but at most 6 many of the remaining k.

f(3)=6, f(k)=k>—k
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The first-move structure of n<®

Relevant characteristics:
@ The lexicographical order <
@ The tree (partial) order <
© The first move from t to s

@ The meet operation r As is the largest node t such that t < r
and t <s.

Definition

The meet-closure ((A)) of a set A C n<® is the smallest set which
contains A and is closed under the meet operation.
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Ramsey theorem

Theorem

Fix a set AC n<?, and let &/ be the family of all subsets of n<®
first-move isomorphic to A. If ¢:.&Z — {0,...,m} is measurable,
then there exists T C n<® such that

@ T is first-move isomorphic to n<?®

@ c is constant on the subsets of T.




Ramsey theorem

Theorem

Fix a set AC n<®, and let &/ be the family of all subsets of n<®
first-move isomorphic to A. If c: &/ — {0,...,m} is measurable,
then there exists T C n<® such that

@ T is first-move isomorphic to n<?®

@ c is constant on the subsets of T.




For i,k < n, an (i, k)-comb is a set that is first-move isomorphic to

{(k), (iik), (iiiik), (i k), (k) (iI*%k),...}



For i,k < n, an (i,k)-comb is a set that is first-move isomorphic to

{(k), (iik), (iiiik), (i°k), (ik), (i*°k), ...}




An (i,i)-comb is called an i-chain.
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@ An (i, k)-comb is first-move equivalent to all of its infinite
subsets.

@ Every infinite set contains an (i, k)-comb for some i, k.

Q Let S51,...,S, disjoint subsets of m x m.
Let T; be the set of all (u,v)-combs, for (u,v) € S;

Then {[;:i < n} is a Borel strong n-gap

We call this a standard strong n-gap.
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Theorem
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Let {l;:/ < n} be a strong analytic gap on N. Then there exists

@ a one-to-one map u:n~? — N
@ a standard strong n-gap {4A;:i < n}

such that u(A) contains an infinite set from [ if and only if A
contains an infinite set from A;

@ For every I there is a standard A with A <T.

@ Inside the standard strong gaps, there are the minimal ones
o Aisminimal fE<A=A<E.
o Two minimal are equivalent if A’ < A and A < A’
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Finite combinatorics behind

Problems about general analytic strong gaps are reduced to
problems about standard strong gaps, which in turn reduce to
finite combinatorial problems.

Definition

A function f : n X n—> mx m is a morphism if there exists a
one-to-one u: n<® — m<® which takes (i, )-combs to
f(i,j)-combs.

@ The category formed by sets n x n and morphisms as above
governs the behavior of strong analytic n-gaps.

@ This allows to compute the minimal strong n-gaps: each of
them is given by seven parameters (A,B,C,D,E,y,7)



Minimal strong gaps

“uf § I
I .

Minimal analytic strong 2-gaps



Minimal strong gaps

X3 X3 X6
X3 X3 x1
X3 X6 X3

Minimal analytic strong 3-gaps



Part 11
The record structure of the n-adice tree and general gaps
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The set of records from t to s

Let t <s bein n<®, s=(to,...,tn,10y---1Fm)

Definition

A record node from t to s is a node (to,...,tn,r0,.-.,rk—1) such
that r, > r; for all i < k.

t record(t,s) = {t,u,v}
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The record structure of n<@

@ The relevant characteristics of the record-structure are the
same as for the first-move structure, with the addition of the
set of records record(t,s).

@ The record-closure (A) of a set AC n<® is the smallest set
which contains A and is closed under the meet operation tAs
and under taking record(t,s).

@ A record isomorphism between A and B is a bijection
f : A— B which extends to a bijection f : (A) — (B) which
preserves all relevant characteristics of the record structure.
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Record equivalence

A set {t*,s*} record-isomorphic to {t,s} as before:

<8

A set {t*,s*} first-move-isomorphic to {t,s} as before:

S*

t*
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The role of (i,j)-combs is played now by types.

There are two kind of types in n<®:

@ Chain-types are given by an increasing sequence of numbers
< n, like [1257], [0], [468], etc.

@ Comb-types are given by two increasing sequences of numbers
< n, that we write in two rows, with a global order, which is
read from left to right, like [3%5], [*4%67], etc

(the rightmost number must always be in the lower row, and
the leftmost numbers of each row must be different)



e [468]
X1,X2, .. } of typ
A set {xo,

3

Z1



A set {Xo,Xl,XQ, - } of type [468]




1 7]
efs6s
t {xo,x1,X0,...} of typ
A se '

€2

Z1

Zo



A set {xp,x1,x0,...} of type [416 8]
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A set {xo,x1,X2,...} of type [41678]




[17

A set {xo,x1,x,...} of type [*'468]
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There are eight types in 2<®:

[0], [1], [01], [°4], [*o]. [°*1] [oal. [0"1]-

There are 61 types in 3<%,

There are approximately ~ 8\3/'3:77 types in n<®
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Types

Properties of types

O A set of type 7 is record-equivalent to all of its infinite
subsets.

@ Every infinite set contains a set of type 7 for some 7.
@ Let S1,...,S, disjoint sets of types in m=?.
Let I; be the family of all sets of type 7, for T € S;

Then {I;:i < n} is a Borel n-gap

We call this a standard n-gap.
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Finding a standard gap inside

Let {Il;:/ < n} be an analytic gap on N. Then there exists a
one-to-one map u: n<® — N and a permutation € such that

o If Ais an [i]-chain, then u(A) € ;).




Finite basis for strong n-gaps

Let {I;:/ < n} be an analytic gap on N. Then there exists

@ a one-to-one map u:n~? — N
@ a standard n-gap {4A;:i < n}

such that u(A) contains an infinite set from I; if and only if A
contains an infinite set from A;
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Finite basis for strong n-gaps

Theorem

Let {I;:/ < n} be an analytic gap on N. Then there exists
@ a one-to-one map u:n~? — N
@ a standard n-gap {4A;:i < n}

such that u(A) contains an infinite set from [ if and only if A
contains an infinite set from A;

@ For every I there is a standard A with A <T.
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Let {I;:/ < n} be an analytic gap on N. Then there exists

@ a one-to-one map u:n~? — N
@ a standard n-gap {4A;:i < n}

such that u(A) contains an infinite set from [ if and only if A
contains an infinite set from A;

@ For every I there is a standard A with A <T.

@ Inside the standard n-gaps, there are the minimal ones
o Aisminimal fE<A=A<E.
o Two minimal are equivalent if A’ < A and A < A’
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Finite combinatorics behind

Let ¥, be the set of types in n<?.

Definition

A function f : T, — T, is a morphism if there exists a one-to-one
u:n<® — m<?® which sends sets of type 7 to sets of type 7.

@ The category formed by the sets ¥, and morphisms as above
governs the behavior of analytic n-gaps.

@ This category is more complex than the one for strong gaps,
so we were not able to describe the minimal analytic n-gaps.

@ We studied some phenomena in this category, so as to find
the list of minimals for n =2 and n= 3 and to be able to
solve the problem at the beginning.



The minimal analytic 2-gaps

There are 9 minimal 2-gaps (5 up to permutation):

Mo M
1** [0] all other types
2| [0] [1]
3| [0] [1], [01]
4* | [0],[o1] [1]
51 [0 [1],[01], [*01]

**: two permutations
*. equivalent to its permutation
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The max function

Definition
If 7 is a type, max(7) is the maximal integer appearing in the type.

For example, max[3'7s6] = 7.

For To,...,Tn_1 € Tm, TFAE:

Q max(1) < max(ty) < --- <max(Ty-1),
@ There exists a morphism f : ¥, — T, such that f[i] = 1;.




2. THE MAX FUNCTION 5

fact provides a nice embedding u such that ¢u satisfies condition (2) of normal
embeddings for all 4-families. This finishes the proof by Lemma 1.1 o

2. The max function

a type 7. max(r) denotes the maximal number which appears in 7. That

max(7) = max(max x(7')).

THEOREM 2.1. For a family {7; : i € n} C T,,, the following are equivalent.
(1) There exists a normal embedding & : n<“ — m=*
(2) max(ro) < -+ < max(ry-1)

such that 3li) = 7;

PROOF. Supposc that item (1) holds, pick i < j and let us check that max(r:) <
max(r;). Let a = 6(j) A 6(ji). Since {j. ji} are the two first element of a chain of
type [i]. it follows that

max{max{6(j) \ a}. max{¢(ji) \ a}}

(1) max(r;)
On the other hand, both {§. 7} and {0, ji} are the beginuing of chains of type [j].
s0if 8 = 6(0) A6(3) and ¥ = ¢(0) A ¢(ji) we have similar formulas

(1) max(rj) = max{max{6(0) \ 8}, max{6(j) \ A}}.

(I11) max(r;) = max{max{6(0) \ 7}, max{6(ji) \ 7}}
We distinguish three cases. The first case is 5 < o, which implies that y = § < a.

(0 oG) (i)

wx(6(j)\@) < max(6(j)\ B) and max(é(ji) \a) < max(6(ji)\7) so we conclude
the formulas (I). (IT) and (ITT) above that max(r;) < max(r;) as desired.
The second casc is that # = a, which implies that 7 > a =

oG) () i)

i=a

By formula (1), it is enough to check that max(6(j) \ o) < max(r;) and max(6(ji) \
@) < max(;). In this case, () \ @ = 6(j) \ 3 50 it is clear that max(6(j) \ @) <
max(7;) by (I1). On the other hand.

00\ a=(v\ )" (@) \ )
Y\ B)~(9(0) \ 7), t

On one side, 6(0) \ refore

max(y\ @) = max(y \ ) < max(6(0) \ ) < max(r;)

by (1), and on the other side max(6(ji) \ 7
that max(6(5)\ 0) < max(r;). By lormul. (1, this finishes the socond case
The third case is that 3 > a, which implies that

) < max(r;) by (I1I), so we conclude

Proof of the max function theorem
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4G o0)  60)

This is solved in a similar way as in the second case, changing the role of j and ji. By
formula (1), it is enough to check that max(6(j)\a) < max(r;) and max(6(ji)\a) <
max(r;). Now, ¢(ji) \ @ = 6(ji) \ 7 50 it is clear that max(6(ji) \ @) < max(r;) by
(I11). On the other hand

o(0)\a = (8\ )~ (6()\ A)

On one side, 6(0) \ 7 = (5\7)~(6(0) \ ) so

max(8\ a) = max(8\ ) < max(6(0) \ 7) < max(r;)
by (IIT), and on the other side max(6(j) \ 5) < max(r;) by (II). So we conclude
that max(6(j) \ @) < max(7;) and this finishes the third c

Now, suppose that (2) holds'. For every i fix (u rung of type 7; and write
u; = i@ in such a way that [i;] = [v;]. When 7, is a chain type, v; = ii;
and ;= u. When 7; is a comb type we can make the additional assumption®
that the last integer of ii; and the first integer of @ are both equal to 0. We
shall construct an vmhmhlm,, 610 — m= together with auxiliary functions
61,6" < — m<* fori =0,...,n — 1. All of them will be defined by induction
on the <- order 01 n<“. We first choose ¢(0). ¢i(0). ¢*(0). Let {ji.....j,} be an
enumeration of all indices i such that 7; is a comb type and such that

max(r},) > max(r},) > -+ > max(r} ),

and moreover, if max(r}.) = max(r},). then j, < jq if and only if > s.
We define

6,0) =
on®) = .
o0 = v,
&) = ;0" if 7; is a comb type.
6:(0) = ¢'(0) = o(0) if 7 is a chain type.

The number [; of 0°s added to construct ¢(9) is chosen so that ¢(0) has length
strictly larger than 6(0). Figure 1 represents how 6(0). ¢(0) and ¢*(9) look like
in the trec. The pattern reflected in this picture will be repeated for o(x), o ()
and ¢*(x) for any . It is natural to make the notational convention that ¢;,,, = ¢
and this will avoid repeating some argnments along the proof

The proof of later Lemma 5.5 may be enlightening about the necessity of constructing & in
such a complicated way

2The aim of this assumption is to make sure that the ritical nodes of u; are far away from
the splitting between i; and 7; and to avoid in this way peculiar situations.



Proof of the max function theorem

FIGURE 1. Configuration of ¢, ¢k, ¢

We shall see how to define all these functions on =~k once they are defined on
all y < 2™k, in particular on y = . We consider

q = q(k) = min{r : max(7},) < max() or j, <k}

(If there is no 1 like that we may assign the value ¢ = p+1). The definition of
the functions is then made as follows:

oz"k) = o) i T0j T,
i, (@"k) = ¢ (x)ifr<q
65,(a7k) = *@) @, g, Ty, i r 2 q

(™ k)it ~0" if 7 is a comb type,

= Gi(e™k) = o(z"K) if 7, is a chain type,

Now, the number £; of 0's added to construct (k) is chosen so that &' (k)
has length larger than ¢(z~k) but also larger than all 6(y). ¢;(y). ¢/(y) that
have been already constructed for y < #™k. A picture of what is going on is
given by Figure 2. The point is that both sets {0(z), dx (). ¢*(#).k < w} and
{6(z~k), éx(z~k),¢*(@"k).k < w} must follow the pattern® provided by Fig-
ure 1, but we make 6;, (z™k) to stay the same as d;, () for r < g, while ¢;, () is
moved above ¢* (z) " for r > q.

Claim 1: For e and* for r

P

(%) Gj,., (#) = 05, () v, "w for some w such that max(w) < max(v;,).

Proof of Claim 1: This holds when & = 0. We suppose that it holds for = and
we prove it for #™k. For r < ¢ = q(k) we have that 6;, (z™k) = ;, (x) while for
72 q we have that

65 (@7 k) = ¢F (@) "0, "0 T T,

3When we say following the same pattern, we mean up to equivalence. Looking at Figure 2,
one may wonder if the long path from oy, _, (=~ k) till ¢;, (= k) is really cquivalent t0 vy, , as
Figure 1 su This is the content of Claim 1

Remember our convention that ¢4, () = $(2)
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FIGURE 2. Passing from  to

Thus, we have @, ., (z) = @;, (z) ~v;, when cither 7 < g — 1 or r > g. Only the
special attention. In this case
2 (@)

i (@) = 65, (27k) = ¢F () il
Either 7, is a chain type (in which case ¢,(z) = ¢(z)) or k = ji for some I which
must satisfy > ¢ by the definition® of ¢. In either case the inductive hypothesis
implies that © ¢(x) = dj,_, () v;,, ~w; where max(w;) < max(v;,_,). If 73 is

case when r = g — 1 desery

6. (27K) = 6j,_,(z k) = &;

a chain type, then ¢*(x) = éx(x), so
B, (a7k) = ¢F (@) i = o, (2) v, Twn T

for because”

and this is what we were lookis

max(iiy) < max(

) < max(r,

max(v;, )
On the other hand, if 7 is a comb type, then ¢*(x) = dy.(x) iy 0%, so
B5,(@7k) = ¢* (@) itk = 0y, (@) v, w0

what we were looking for, beca

and this is a

max (i), max(iig) < max(ni) < max(7}, ) = max(ey, ,)

similarly as in the previous case. This finishes the proof of Claim 1.

511 j = k then in particular j <k so by the minimality of g in i definition, g < L
Gt apply the formula (+) repeatedly for 7 = ll arriving at u(x).
TEhe central nequality max(r) < max(r},_,) fllows from the defiition of g
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Claim 2: Suppose that 7 is a chain type. Then for every € n< and every
w € Wi, we have that 6(z~w) = ¢(z) ~ux~w’ where max(u/) < max(ri).

Proof of Claim 2: We proceed by induction on the length of w. Together with

the statement of the claim, we shall also prove that for every i = 0,

write ¢:(¢™w) = ¢(z)~w~w} where max(uf) < max(rc). The first case is that
(k). Remember that

Ga"k) = ¢*

L we can,

w

and since 7 is a chain type, ¢*(z Moreover, by Vllu definition

d i
of 4 = k) and the way that the sequence (1} i chosen wo have tha

() max(vy,) < -+ < max(vy,) < max(ry)

50 the expression above is as desired. and the claim is proven for w = (k). Con-
cerning ¢;(z™K), if 7; is a chain type, ¢;(x k) and there is nothing to
prove. The other cas » for some r. Then, by he deinition ofg.r>q
since j, = i < k, therefore

Gi(a7™k) = ¢, (x7k) = o*(a) iy
¢ way as before, by (x) above, this provides an expression ¢;(z~

2)”ugw) where max(w) < max(ry). This finishes the initial step of the induc-
tive proof when w = (k).

Now we assume that our statement holds for w € m we fix € € {0,...,k} and

we shall prove that the statement holds for u

(0) dla~w™€) = ¢f(a"w

Notice that max(ii¢) < max(re)
expression (xx), the defin

that i

Yin Vjos

L 'wf v,

max(). and in the same way as we had the
ng formula of g(€) implies that

()’ max(v;,) < -+ < max(vj,,,,) < max(re)

s0 all vectors vj, appearing in the expression (¢) above
max(ny). Hence, the expression (0) abov

are bounded by max(r¢) <
can be rewritten as

Bla"w™E) = ¢ (@™ w) " w' with max(w') < max(ri)
If 7¢ s & chain type, then ¢¢(z~w) = ¢(z~w) and we are done, by the inductive
hypothesis. If 7¢ is a comb type, then

0k

#5@"w) = pelaw

which also provides the desired form because max(ite ~0%) < max(r¢) < max(r)
and we can apply the inductive hypothesis to g¢(a"w).

Finally, we fix i € {0,...,k} and we prove that also ¢; £€) is of the form
o) u~w] with max(w]) < max(ry). If 7 is a chain type, there is nothing
to prove because ¢; = ¢. Otherwise ¢; is a comb type, and i = j, for some
v I < q(€) then gi(x~w™€) = 6:(a~w) and we apply directly the inductive
liypothesis. If r > g(€), then

Gila™w™E) = (5™ W) i Ve Vi

Sy the definition of g, (1) < max(y) or jy < k. In the latter case, max(v;,) <

max(r;,) < max(ri) by the statement. (2) of Theorem 2.1 that we are assuming,

Proof of the max function theorem
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By the expression (x+)' above, all vectors to the right of ¢ (2™ w) are bounded by
max(re) < max(ry), while

~ot

(@™ w) = del™w)"

is of the form ¢(z) uiw' with max(w') < manx(n} by the inductive hypothesis.
“This finishes the proof of Claim 2.

Claim 3: S

uppose that 7 is a comb type, z € n<* and w € Wi. Then
Gp(z™w) = ¢* (@) i@’
where max(u) < max(rf).
Proof of Claim 3: Since 7 is a comb type, k = j, for some r. We proceed
by induction on the length of w. The first case is ot w = (k). Notice that
7> q = qk) because j, = k < k (by the definition of ¢), hence

D™k = (@) @0y, " T v

ssion

It is enough to show now that all vectors to the right of i in the expr
above are bounded by max(r?). This is equivalent to show that either ¢ = r or
max(v;,) < max(7). Remember that max(ve) = max(r{) for any & By the
definition” of g, one of the follow
s 1: max(7),) <

g two cases must hold:
< max(m). In this case, since & = j, and g < r we have that

max(r},) > max(r}.) = max(r}

From the two inequal
max(rs) = max(rf).
to prove.

Case 2: max(r},) > max(n) and j, < k. Now, j, < k implies that

above we conclude that max(r!) < max(ry), hence
Therefore max()) < max(,) = max(rf) as we wanted

max(7}) < max(r;,) < max(y)
hence actually max(r},) max(rf) then we are done, so
we suppose that max(7i)
cquations we get that

max(7y). If max(r)
= max(r}) > max(rf). We combine the two previous

max(r},) = max(n) = max(}) = max(r}

but this implies (h_\'vhv way in which chose the order of the cnumeration {ji. ... j,}
and the fact that Jjr assumed in Case 2) that r < g. hence r = g as we
wanted to prove. This fnishes Case 2, and fnishes the proof of nital ase 1 = ()
as well.

v wo suppose that Claim 3 holds for w, we fix ¢ < k and we ~h.xll prove
hat Claim 5 okl fo € as well. 1 7 < g(6) then ~w) and
we apply direetly tho inductive hypotheis. Henco, we suppose that r > g(¢) and
therefore

(#) ou(aw

On the other h

~6) = ¢* (27 w) " "

nd

(@™ w) = grle"w) i 0%

911 should be noticed that since we suppose r > g we cannot have g = p+ 1, so the minimum

that defines ¢ is actually attained at g
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s0 applying the inductive hypothesis to dy(z~w), we get that
P w) = o @) @ !

with max(u/) < max(rf). Looking back at the expression (&) above, it is enough

to show that all members of that expression to the right of ¢*(z~w) are bounded

by max(r{). This is equivalent to prove that either r = g(¢) or max

max(vj,..,) < max(7f). Let now ¢ = g(€). We distinguish two cases:

< max(7i). In this case, since k = j, and we supposed that

g < r we have that

> max(r} ) = max(r})

|
max(7),

) < max(r), hence
max(7{) as we wanted

From the two inequalities above wo conclude that max
erefore max(7}) < max(ny) =

) > max(ry). Since € < k this implies that max(r),) >
max(7x) > max(7e). B\' the definition® of ¢ = g(€). this further implies that
ja < & Now, j, < k implies that

Case 2: max(r}

max(7},) < max(r;,) < max(i

hence actually max(r,
suppose that max
and we get that

max(rf) then we are done, so we

) = max(r}) > max(7{). We combine the previous equations

1
max(7}

but this implies (by the way in which chose the order of the enumeration {jy. ... j,}

and the fact that j, < & < k = j, that we noticed above) that r < g. hence r = g

as we wanted to prove. This finishes Case 2, and finishes the proof of Claim 3 as well

We fix & < n and we shall prove that if ¥ C n<* is a set of type [k]. then ¢(Y)
is a set of type 7. This will finish the proof of the theorem because, if ¢ was not
& normal embedding, we can get a normal embedding by composing with a nice
embedding using Theorem 1.3.

It 7 is a chain type, then the fact that ¢(¥) has type i follows immediately
from Claim 2. So suppose that 7 is a comb type, k = jy. anc
If we look at the inductive definition of ¢, and consider the case the case when
¢~k and . notice that then r > g by the definition of g since j, = k < &,
and we can write

where max(v;,) < max(v;,) = max(vy) for all £ = r 4+ 1
i we can write that

~.p. 1 we apply this to

() Su) = orly) “viwi
where max(w;) < max(v). On the other hand, Claim 3 provides the fact that

(#%) Orlyisr) = O (i) i~ w) = bn(ys) i ™0 i " w]

where max(w;) < max(u;). Remember that in the inductive dvimmuu of . the
mmber ¢ of 0's above was chosen so that the length of ¢ (y;) it ~0¢ is larger than

Proof of the max function theorem
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Sl
3
Gulw)

FIGURE 3. The structure of ¢(Y) as a 7i-set

the length of 6(y). The expressions () and (++) together yield that 6(¥) is a set
of type 7 with underlying chain {é(y:) : i <}, as it is shown in Figure 3.

COROLLARY 2.2. If ¢ : n< — m<* is a normal embedding, then maxi
max(r') implies that max(ér) < max(or’).

CorovLary 2.3. If {S;
then {T's, : i € n} is an n-gap.

i € n} are pairwise disjoint sets of types in m<*

PROOF. The intersection of two sets of different types is finite, so it is clear
that the ideals are mutually orthogonal. We have to prove that they cannot be
separated.  After reordering if necessary, we can find types 7, € S; such that
max(y) < max(ry) < -+ < max(y1). By Theorem 2.1, there is a normal embed-
ding ¢ : n<* — m=* such that ¢li] = 7;. Finally, use Lemma 0.23. [a}

We can provide now our first example of a minimal analytic n-gap:

COROLLARY 2.4. Let M; be the st of all types 7 in n< such that max{
The n-gap M = {Ln, :i < n} in n=* is a minimal n-gap.

PROOF. Suppose that T' < M and we must show that M < I'. By Theo-
rem 0.25. we can suppose that I' = {T's, : i < n} is a standard gap in n<*. That
is, there is a permutation £ : n — n such that [i] € S.;). By Theorem 1.3, there
is a normal embedding & : n<¥ — n<¥ such that 7 € S; if and only if 67
In particular, 8li] € M.(;). so max [i] = &(i). Since

max(0] < max(1] < -+ < maxfn -

Corollary 2.2 implics that

max (0] < maxdfl] < - - < maxgfn — 1),

50 £(0) < £(1) < -+~ which implies that ¢ is the identity permutation. Morcover,
we claim that T = M. For pick 7 € M;. Then max(r) = max{i]. so max(ér)

max(8li]) = i which implies that 6 € M;, hence 7 € 5. This shows that M; C S;
for every i. Since the union of the sets M; gives all types in n<* this actually
implics that M; = S, for every i < n. [a}

i<} the
their extreme

For a permutation 3 : n — n, let us denote by M?
d-permutation of M. The minimal gaps M? are cha
asymmetry in the following sense:

COROLLARY 2.5. The minimal n-gap M® has the following two properties:
(1) M is dense.
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Definition

We say that the type T dominates the type o if
@ the second integer from the right in 7 is in the upper row

@ and it is greater or equal than max(o)




Domination

Definition

We say that the type T dominates the type o if
@ the second integer from the right in 7 is in the upper row

@ and it is greater or equal than max(o)

Examples:

o [%213,] dominates [02]

e [%231,] does not dominate [02]

o ['5] does not dominate [%,].



Domination

Definition

We say that the type T dominates the type o if
@ the second integer from the right in 7 is in the upper row

@ and it is greater or equal than max(o)

Theorem
For 0,7 types in m=®, TFAE

Q@ 7 dominates o,

@ There exists a morphsim £ : ¥, — %, such that
o f[0]=o,
e fv =1 for all other v € %,.




4. DOMINATION &

case: it can be taken a top-comb type with max((7')!) = k — 1. In this way we

reduce the general case to the first case.

If ¢ satifies the conditions of Lemma 3.3 we shall say that ¢ collapses below k
(or that 6 collapses up to k — 1) into a chain of type . The fact that in condition
(1) of Lemma 3.3, the maximum of 7 is attained in 7! is important, for consider the
following example: \\vumuuhrruun normal embedding ¢ : 3 — 25 such
that for every z, 6(z~2) > ¢(x)"1, and ¢(2"i) cquals ¢(z) followed by a finite
sequence of 0's when i = 0, 1. Such o cmbedding can be constructed inductively
so that 2 < y implies [6(z)| < |¢(y)|. Notice that 6[° 2] = [01] but ¢ does not
collapse below 3.

4. Domination

The notion of top-comb introduced in Definition 3.2 and illustrated in Figure 4
is going to be crucial in this section. The key property now will be the following

LEMMA 4.1. Let 7 be a top-comb type and let (u,v) be a rung of type 7. If w
is such that max(w) < max(r') and v=w| < |u], then (u,v"w) is also a rung of
type 7.

PROOF. Straightforward. Just look at the left-hand side of Figure 4 o
tes another type o, and we will
max(o)

y that a type 7 domi

DEFINITION 4.2. We
write 73 0, if 7 is a top-comb type and max(r"

LEMMA 43, Let ¢ : 0= — m=* be a normal embedding, and let 7 € T, be
a type that dominates 6o for all o € T,. Then, there exists a_normal embedding
U (n+1)<% — m<* such that o = ¢o if max(a) < n, and Yo = if otherwise

max(c) =n
PROOF. Let mg = max(r') + 1. Without loss of generality we will suppose
that m = mg. We can do this because the domination hypothesis implies that all
types do live in mG®, and therefore we can find'? gy : n
doo = o forall 0. Let Y = {yo, y1....} be an infinite sub
{ } be a bijection such that & < y if and only if b{z) < b(y)
. there is a unique way to write 2 in the form = = u~n"v with
by splitting & at the position of the last coordinate
1)<¢ — m< as

e (n+1)*\n

(n+1)=* and v €

equal to n. Using this, we can define v : (n +
v(v) w~ olv)

YT = ) " 6(v)

where v € n<¥, u € (n+1)<

Claim 1: Tf X C (n+1)<* is a set of type o with max(s) < n, then $:(X) is a
set of type .

Proof of Claim 1: This is clear, because X must be cither contained in ei-
ther <, in which case $:(X) = ¢(X), or X is contained in a set of the form
v € n<%, in which case ¥(X) = {yy) "z : 2 €

m

{u~n~v: v € n<} for some

120me way to do this is to define @o(t) = (sh-..,5}), where o(t) = (s0,...s%), 8 =

min(si,mo — 1),

Proof of the domination theorem
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@) ov2)

FIGURE 5. The set 12(X)

FIGURE 6. The set (X) after passing to a subsequence.

X contains

Claim 2: If X C (n+1)<* is a set of type o, with max(s) = n, then
an infinite subsct X' such that ¢:(X') has type 7.
Proof of Claim 2: Let X = {1, o }. and write 2; = u7n™v; in the form

>

indicated above, with v; € n<. Since X has type o with max(0) = n, we must
have' u; # uj for i # j. We mmlm () = Yy~ G(vs). By re-conmerating,
et us muppose chat $(z) = i~ ¢(u) and semember that {1, ... } s type 7,

<0 that the set $(X) looks ke n Figure 5 Y1 A iz the root nodes

siting on the chain below ¥. By passing to a subsequence, we ean suppose that
[¢:a)| < |zi] for all i, as illustrated in Figure 6. Once we do this, we claim that
(X) has type 7. We have to check that (zi+1\ 2, t/(z;)\ ) is a rung of type 7. We
know that pe 7. since ¥ was of type 7. Remember

i) = 9~ 9(vi), assumption at the beginning of the proof
max(r!) > max(9(v:)). We can apply Lemma 4.1 for u

v=y;\ 2 and w = (;

\
t\

THEOREM 4.4. For {7, : i € n} C T, pairwise different, the following are
equivalent:
(1) 7 dominates iy for every k=1,....n—1,

(2) there exists a normal embedding ¢ : n<“ — m<* such that o

for every o €T,

PROOF. That (1) implies (2) follows from repeated applicacion of Lemma 4.3.
We prove that (2) implies (1). As a first case, we prove the implication when n =
and k = 1. Thus, we have 7 # 7 and a normal embedding ¢ : 2 — m=* such

131 we had u; = uy for i < j, then the set {z;,;) would be equivalent to {vi,v;) € n<~, but
being X of type o, it is also equivalent to {v,u" v} for a rang (u, ) of type 7, and max(e) = n.
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o) Gra-m

FIGURE 7. The nodes z,, in a sequence with (x).

o)

HTpa02)

FIGURE 8. The nodes ¢(2y,4,) as a set of type 71 above the branch B.

that 6[0] = o and do = 7 for eve
a chain type by Lemma 3.3. Consider the clements
0 means a sequence of p many 7eros). Notice that whenever py < pz < -+ and
are such that

type o # [0] in 2<“. Notice that 7,
170 €

n<@<
(*) @n+1<pus1—pa

o], see Figure 7. Hence ¢(X) is of (comb)

the set X = {Zp, qy1Tpaq is of type [!
g branch of this set

a
type 7y, 50 it looks like in Figure 8. Let B be the under
6(X) that we can view in Figure 8, and we can formally define as

B={t:3i Vj>i t <o)}

Claim A: The branch B does not depend on the choice of the sequences p; <
P2 < and gy < gy < - with property (x) above. Proof of Claim A: Choose
different sequences pj < ph < --- and g} < g3 < ---. and consider X’ and B’
the analogues of the set X and the branch B obtained from this new sequences of
integers. Observe that X and X’ can be alternated to produce a set of the form

Y

iy g + Ol g Eoag g oo}

and the sequence ky < ks < -+ can be chosen to grow fast enough so that property
(+) is satisfied, and Y is again a set of type ['o]. Then ¢(Y) is a set of type 71 again
of the form represented in Figure 8 with underlying branch By. But o(Y) con-
tains both an infinite subsequence contained in ¢(X) and an infinite subsequence
contained in ¢(X'). This implies that the equality of the underlying branches
B =By = B', and finishes the proof of Claim A.

Proof of the domination theorem
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Awpz)
D(Tpge
Heag) .

FIGURE 9. Sets of type 7 over a 7

Now, for p,q < w let 2, = max{t € B 1t < 6(zy,)}. We distinguish two cases

Case 1: There exists p < w and g; < g2 < -+ such that 2pq, < Zpq, < Zpgz <
In this case, {Zpg,. Zpgsr---} has type [0], hence Z = {6(zpq, ). O(xpq,). -}
has type 7o. But each ((z,) goes out from the chain B at the node 2y, . s0
these nodes (i, ) of the set Z are displayed exactly in the same way as shown in
Figure 8 (with now p = pi = p2 )- We argue now t tually Z contains a
subsequece of type 71, and this derives a contradiction since we said that Z has type
7o and we supposed that 7 # 1. The point is that each node z,,, is a member
of some sequence {1, ; } having property (x). so each node

some set of type 7 with underlying branch B. Thus, for hi
pair (£\ Zpq,. (pq,) \ 25q,) is & rung of type 1. In this way, we can construct a
subsequence of Z of type 7, as desired

Case 2: For every p there exists an infinite set Q C w such that z,, = 2, for
all g,q' € Qp. We denote z, = 2, g € Q. We can also suppose! that () > 2,
for all g € Qp. The set ¥, = {9(pq) : ¢ € @y} is now a set of type m because it is
the image under ¢ of a set of type [0]. Moreover, all elements of ¥, are above z,. The
se 1, we know that cach 6/(pe)

situation is illustrated in Figure 9. Similarly as in C
t of aset of type 71 with underlying branch B, so (t\ 2, 6(z,0) \ z,)
B. We prove now that 7,
max(é(pg,) \ 25). but

is an elen
is a rung of type 7y for every p, g and high enough t €
dominates 7. Pick g1 < gz in Q. We have that max(r])
since Y, is of type .

max(6(apg,) \ 2p) = Max(6(xpg,) \ By, )) = max(ro).
which proves that max(r}) > max(m). Finally, we prove that 7 is a top-comb type.
We know that (1,v) = (£\ 2, 0(2q,) \ 2,) is & rung of type 7, for some high enough
t. Let b be the length of the last critical step of w. That is, if u = u1 ™ -+~ u, with
u; € Wi, as in Definition 3.6, lot h = |2, u; |- We can pick g5 € Q,
such that [¢(xq,)| > h. Then (u',v') = (£\ 2, $(pg,) \ st be again a rung of
type 71 for high enough £, and we made sure that this rung satisfies the top-comb

condition as illustrated in Figure 4.

6 is one-to-one so there is at most one g such that 6(zpq) = .
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FIGURE 10. rung of a top? comb type

That finished the proof of the case when n = 2 and k = 1. For the general

case, consider a normal embedding ¢ : 25¢ — << given by V(io,....ip) =
(k=1++ig,....k—1+i,). Then we can apply the case when n =2 and k = 1 to

¢ = oy 1 and 7 = 7

COROLLARY 4.5. If ¢ : n<¥ — m<* is a normal embedding, ~ > 7' and
&7 # 67, then g > G7

COROLLARY 4.6. Let ¢ : n<% —+ m<* be a normal embedding, T a top-comb
type with max(r') = k, and suppose that & is not constant equal to &t on the set
of types of mazimum at most k. Then &7 is a top-comb type

COROLLARY 4.7. Let M be the minimal n-gap of Corollary 2.4, and let {S;
i < n} be pairwise disjoint nonempty families of types in m=*. The following are
equivalent.

(1) M< (T zi<n

(2) we can pick 7 € ; such that 7o € 7 € -+ € Tay

5. Subdomination

When we remove from domination the condition of being a top-comb, we obtain
the notion of subdomination.

DEF

will write 7 3, 0, if 7 = (7%,7)) is a comb type which is not top-comb, and
max(r!) > max(o)

5.1, We say that a type 7 subdominates another type o, and we

Lemma 4.3 says that when a type dominates  the range of a normal embedding
©. then it is possible to define a new normal embedding ¥ whose range equals the
range of ¢ plus the type 7. In this section, we shall see that if 7 only subdominates
the range of ¢, then we can find a normal embedding 7 whose range contains the
range of ¢, plus the type 7, plus maybe at most five more types, which are formally
described in Definition 5.2 and illustrated in Figures 11 and 12

DEFINITION
it other comb types:

. Given a comb type 7 which is not top-comb, we associate to

(1) ¥(r) is exactly equal to 7 except that the last element of 7 is moved to
the penultimatc position in the order 3 order o make H(r) a comb type
For example, if 7 = [2167], then ¢(r) = [26%7




[llustrative proof

We shall sketch the proof of the results announced at the
beginning:

If Tg,...,Ma_1 is an analytic n-gap, then AM C N :
@ To|lm,T1|m form a 2-gap.

@ T/m =0 for all but at most 6 many of the remaining k

If Tg,...,Mh_1 is an analytic n-gap, then AM C N and i <j < n:

o [i|n,Tj|m form a 2-gap.
o |y =0 for all other k




Sketch of some proofs

Step 1: We apply our general theorem to the gap {Fo,l1}




Sketch of some proofs

Step 1: We apply our general theorem to the gap {Fo,l1}




Sketch of some proofs

Step 2: Apply the Ramsey theorem




Sketch of some proofs

Step 2: Apply the Ramsey theorem and we have Theorem 1!




Sketch of some proofs

Now we go for Theorem 2.




Sketch of some proofs

Observe that [°1] dominates [0],




Sketch of some proofs

Observe that [°1] dominates [0], so we have u:2<® — 2<©

[0] —= T

01] x[m]—» T or X
0

[

0 [to] —= T, or X
oL,] 0] —=Tgqor X
101] [to1]— D6 or X
0'1] lo'1]—=Tror X



Sketch of some proofs

Observe that [°1] dominates [0], So if b # 0 we are done.

01l]—T,or X

3o R
)

= [0
[
[
[
[1
™
o
[o*



Sketch of some proofs

Observe that [°1] dominates [0], So if b # 0 we are done.



Sketch of some proofs

The same argument works for these other types.



Sketch of some proofs

The same argument works for these other types.



Sketch of some proofs

But these types also dominate [1].



Sketch of some proofs

But these types also dominate [1]. So if they go to g, we are
done.



Sketch of some proofs

But these types also dominate [1]. So if they go to g, we are
done.



Sketch of some proofs

So far, we isolated at most four families.



Sketch of some proofs

Now look at the types [*o1] and [0].



Sketch of some proofs

max [101] = 1> 0 = max|0].

{101] — Fe or X

0] > [0] —=T

1] 1] —=T

[01] 01]— T, or X
%4] 0] —= Ty or X
o] [fo] —= X

01,] 01,]—= X

[

[

0 1] [o'1]— X



Sketch of some proofs

After some painful computation...

(0] > [0] —= T

1 1] —-T,

[01] 01— T, or X
[01] [01] —T'gor X
o] [fo] —=X

o1] [fo1] — T or X
o



Sketch of some proofs

After some painful computation... So if e # 0 we are done

(0] > [0] —=T

1] [1] —TI4

[01] 01]—T, or X
%4] 03] — T or X
o] [o] — X

o1, 0] —= X

o1] [fo1] — T or X
[o* o



Sketch of some proofs

Now..



Sketch of some proofs

Looking similarly at [01], we have...

0] > [0] — T

] 1] —=1T,
01] >>[01]—» T, or X
——> [%]—=Thor X
—— [l —X
] ——["]—X
1(1)1] ———— [f|—=Toor X

ot ——————=[1]—X



Sketch of some proofs

So if a# 0 we are done,

— >
)] ————> [l —=X
01 ] = [0,]—= X
g ——— i) —=Tpor X
ot1)] — o] —X



Sketch of some proofs

So if a# 0 we are done, and otherwise as well.

[0] > [0] —= T
1] 1] —= T4
[01] —’{01]—> 'y or X
%] ————["]—=Toor X
o] —————[h]—=X
[011] - {011] — X
to1] ——— [fo1]—=Toor X
'] —————[o"]—X
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Another sample result

Theorem 2

If Fp,MM1,l2 is an analytic 3-gap, then at least two of the following
three hold: :

e IMC N : {lgy|m,T1|pm} form a 2-gap but Fa|y =0.
e IMC N : {lg|m,T2|pm} form a 2-gap but [1|y =0.
e IMCN : {l1|m,T2|pm} form a 2-gap but Fy|y =0.

Proof: Just check it for each the 933 minimal analytic 3-gaps.



